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Crossover behaviour in one-dimensional disordered 
systems in external electric fields 
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Switzerland 
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Abstract. A method formulated by Felderhof is extended to the treatment of the conduction 
problem of disordered systems in external electric fields. We apply it to calculate averages 
and fluctuations for two models: model A consists of a sequence of &barriers with random 
position and amplitude. and model B of a sequence of square barriers with random position, 
height and width. The two models have qualitatively different behaviours, which can be 
explained by the fact that the square barriers are bounded. We calculate the ratios of incident 
to transmitted energy and of incident to transmitted current, which are expressed in terms 
of the scattering coefficients. The electric field produces a power-law dependence of the 
averages of those quantities, as opposed to the exponential dependence found for zero field. 
Further, in model A ,  there are two qualitatively different regimes at finite fields. Two 
different critical fields defined in terms of the behaviour of the transmission coefficient have 
been proposed in the literature. The study of the transmission of energy and current allows 
us to give them a well defined physical interpretation. as the fields at which the energy and 
current transmissions, respectively, switch from tending to zero to tending to infinity. i n  the 
zero-field case. the fluctuations are known to dominate exponentially over the averages. In 
the presence of an electric field, we find that in model A the fluctuations still dominate, but 
only algebraically. whereas in model B the relative fluctuations saturate to a constant. 

The problem of electrical conduction in one-dimensional disordered systems can be 
treated as a quantum mechanical scattering problem. From the transmission and reflec- 
tion coefficients an expression for the resistance was deduced in [l]. For vanishing 
external electric fieid the resistance grows exponentiaily with increasing number of 
scatterers, reflecting the localisation of the states. It is known that this resistance has 
an anomalous statistical behaviour, in which the fluctuations dominate the averages 
exponentially. These results have been well established, both numerically and ana- 
lytically [2-71. 

The situation in the presence of a finite electric field is far less understood [8-i5]. 
Several models [ll-151 have been studied in the literature. In [lo], it was proved that in 
random-amplitude Kronig-Penney models in a constant electric field there are two 
regimes in the spectrum: for small fields all the states are algebraically Iocaiised, while 
for large fields they are all delocalised. The method in [lo] does not yield the value of 
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the critical field. Previously, numerical studies of the scattering properties of that model 
had been made [9], and similar conclusions for the transmission coefficients had been 
reached. Two different criteria were proposed to define the critical field separating the 
two regimes in terms of the asymptotic behaviour of the transmission coefficients. 
However, the physical interpretation and the relation to the crossover in the spectral 
properties was unclear. In [14] an approximate analytical expression was found for the 
quotient of reflection and transmission coefficient and related to the numerical results 
in [9]. In [ill a class of smooth and bounded random potentials in a constant electric 
field was considered and it was proved that the spectrum is absolutely continuous. A 
model of a different type, in which the random potential is taken to be white noise, was 
treated in [ 151. 

In this paper, we extend Felderhof's method developed in [7] to the treatment of 
models with an external electric field. It allows us to calculate averages and fluctuations 
for the scattering problem in models with barriers of different shapes. We treat, in 
particular, two models: model A, which is similar to the above-mentioned random- 
amplitude Kronig-Penney model, with the extension that also the positions of the 6- 
barriers are random; model B, in which the potential consists of square barriers with 
random position, height and width. We define two critical fields in terms of the trans- 
mission of energy and current across the barriers. They are equivalent to those proposed 
in [9] and provide a well defined physical interpretation. 

The potentials which we consider consist of a sequence of N scattering barriers, 
superposed on a series of steps of height Frepresenting the potential of the electric field. 
The Hamiltonians are of the form 

(1.1) 

where xi is the centre of the jth barrier and 2di its width. We consider in particular two 
models: the &potential (model A) where 

VI (x - X i )  = U, 6(x - x,) d . = O  I (1.2) 
and the square barrier (model B) where 

The {xi, dj, ui} are random variables with probability density 
.hi N 

~ ( x l ,  d,, ~ 1 ;  * * * ,x>Vv, d N ,  U,Y> =  XI) IIf(xj -x j -1)  hI g(Ui)h(d,)  (1.4) 
j = 2  j =  1 

wheref, g and h are arbitrary probability densities which satisfy the following properties. 

(i) Their first two moments are finite. 
(ii) The supports offand h are such that the barriers do not overlap. 
(iii) For model B the vi are bounded (less than k ; ) .  
(iv) We choose the scales such that (xl - xj-J = 1, and we takef to be symmetric 

around 1. 

With these conditions the model represents a sequence of random barriers with an 
external electric field of average strength F. 
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In $2,  we formulate the scattering problem and define the variables which describe 
the transmission properties of current and energy that we use later for the interpretation 
of the results. In $ 3, we describe the basic features of Felderhof‘s method adapted to 
models with a finite external electric field. In $ 4, we present the results concerning the 
averages for models A and B and, in $ 5 ,  we discuss the fluctuations. 

2. Scattering coefficients 

We treat the scattering problem of a particle of momentum ko incident from the left and 
scattered into a reflected and a transmitted part. The transmission coefficient T and 
reflection coefficients R are calculated using plane waves. On the left of the barriers, we 
have the incident and reflected waves 

q -  = exp(ikox) + r exp( -ikox) (2.1) 

q+ = t exp(ik,,,x) (2.2) 

and to the right, after N barriers, the transmitted wave 

where 

kN = V N .  

The transmission coefficient T and reflection coefficient R are related to the amplitudes 
by 

R = /ri2 T =  (k.vlko)lt12. (2.4) 
T i e  conservation of current is expressed by 

R + T = l .  

Between two barriers, q can be written as 

21, = Ai exp(ikjx) + B j  exp(-ikjx) (2.6) 
with kj defined by (2.3). Successive pairs of coefficients are related by a transfer matrix: 

exp( - ikx) 
G 2 ( X ,  k) = 

(2.7) 
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The ajandpjcanbe calculated explicitlyfor ourtwomodels: forthe b-potentialmodel A, 

and, for the square-barrier model B, 

where 

(2.10) 

(2.11) 

(2.12) 

We should remark that the present method can be applied to symmetric barriers or 
any shape for which one can calculate LY and B. It allows us to calculate the averages and 
fluctuations of the ratio R / T .  

In the case of vanishing electric field, R/T  is directly reiated to the resistance of the 
sample by Landauer’s formula [l]. In the presence of a finite electric field, we can still 
interpret R/T in terms of the ratios between incoming and transmitted energy and 
momentum. To make this explict, we consider the scattering of a wavepacket with 
amplitudef(k). Fort-  -cf, we have 

~ ( x ,  r) -+ O(x, - x) i m  dkf(k)  exp[i(kx - Et ) ]  (2.13) 
j 0  

r -3 --z 

and, fort- +%, 

~ ( x ,  t )  - O(xL - x) ! dkf(k)r(k) exp[-i(kx + Er)] 
0 

r- +x 

+ O(x - x R )  r X  dkf(k)r(k) exp[i(gk2 + FIVX - Et)]  (2.14) 

where xL and xR are some points to the left and to the right of the barriers, respectively, 
andf(k) is sharplypeakedat around ko.  We define theincident, trsnsmitted andreflected 
kinetic energy averages as 

’0 

E(I) . - 
kin . - lim (Y / p 2  I yt) = k2, 

i-3 - x  

E ( T )  k,,, . _  . -  lim ( ~ ~ ~ ( x - X R ) ~ * O ( X  - X R ) ~ ? ) ) =  lt!’(k,\r/kn)k’,= Tkir (2.15) 
I+ += 

Ekln (RI . . -  - lim (?)16(xL - x)p26(xL - x)lq) = / r i 2 k ;  = Rki .  
1’LX 

The (approximate) equalities on the right are a direct consequence of the strongly 
peakedf(k). For the currents (- (qlply)), we obtain analogously 

J ( I )  = k,, J ( T )  = Tk,v J ( R )  = Rko .  (2.16) 
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We shall consider the ratios 

Ef),,/Er: = (R /T  + l)(ki/k:,) 

and 

.T(l)/J(T) = (R/T  + l)(ko/k,v). 

(2.17) 

(2.18) 

These relations will allow us to interpret the crossover phenomena encountered in 
model A. 

3. Felderhof's method 

We summarise here the main steps of Felderhof's method, stressing the modifications 
needed to treat models with an external electric field. For more details the reader is 
referred to [7]. The main result for the averages is the following expression: 

where a, and /3, are defined in equations (2.8) and (2.9). The validity of this formula is 
not restricted to our two models. It applies to any barrier shape with a transfer matrix 
that admits the decomposition (2.8) and (2.9). Thisincludes, for example, any symmetric 
barrier of finite width. 

We should remark that, in the case F = 0, (la,12) and (1/3,12) are independent of j ,  and 
one obtains immediately the exponential behaviour ( R / T )  - exp(yN) for any shape of 
the barriers. 

Equation (3.1) is obtained as follows. We consider a pair of auxiliary variables 
al(x) and a 2 ( x ) ,  which are defined piecewise in each interval {I,};"=? : = {x s xl. 
x1 < x S x2, . . . , x , . - ~  < x s x , ~ ,  X,\r < x} (i.e. between centres of consecutive barriers) 
by 

for x E Zj  (3.2) 
a , ( x )  := [exp(-ikjx)/(l - lr12)[(l - r)Af + (I - r*)Bj] 

a 2 ( x )  := i[exp(-ikjx)/(l - ~ ~ ~ ~ ) ] [ ( 1  + r)Af - (1 + r*)Bj]  

where kj, Ai, Bj take the values corresponding to the interval Zj. Note that al(x) and a2(x )  
are discontinuous at the points xi, j = 1 , . . . , N .  Their values at those points are defined 
as the limit from the left. 

We can now express the quantity lri2/lt12 in terms of al(x) and a&) evaluated at an 
arbitrary point x > xN. We proceed as follows. Since A,v = t and B,v = 0, the evaluation 
of (3.2) at x > x , ~  gives 

al(x) = [exp(-ik,x)/(l - iri2)](1 - r)t" 

a 2 ( x )  = i[exp(-iksx)/(l - ir12)](1 + r)t" 

Inverting (3..3) and using lrI2 + lt[2k,v/ko = 1, we obtain 

(3.3) 

with 
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Note that r(x) does not depend on the particular x, provided that x > xN. 

and (3.2)) that, forx G xl ,  
For the evaluation of T(x), we proceed as follows. We know (from A. = 1, Bo = r 

a l  (x) = exp(-ikox) a 2 ( x )  = iexp(-ikox). (3.6) 

From their definition (3.2) and the known transformation of the Ai, B,, kj from one 
interval to the next ((2.7) and (2.8)), we deduce the transformation of a, and a2. For 
xi < x s xi+ we obtain the reiation 

i.e. a&) for x in the interval Zj is expressed in terms of a, at x j ,  the right border of the 
interval Thus, by iteration, we get, for x > xN, 

Instead of calculating the a, (x)  for x > xN by this iteration and then calculating r, it is 
more convenient to write an iteration directly for r. However, insertion of (3.7) into 
(3.5) shows that, as well as the desired term r, the iteration produces terms of the forms 
a,a,, a ;  a,* and a;  a, + a,a,*. One is thus led to consider the transformation of vectors 
with three components 

iexp[2ikj(x - xj)j 0 0 

1 0  

0 exp[-2ikj(x - xj)] r 
,.p* 

1 1  

K3(j) = 2a7Pi IaJ2 + IBjl2 i P? (XiPj  

The quantity T ( x )  for x > xN can be expressed as 

(3.10) 

(3.11) 
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Since the probabilities of each barrier are independent of the others, the average 
factorises: 

(r(x)) = 1 ( K ~ ( ~ \ I ) ) ( G ~ ( x , ~  - X ~ - ~ ) ) ( W N  - 1)).  . . ( W X ~  - 1 I 

(3.13) 

Up to this point the calculation was exact. Now we make the foiiowing approximation: 
for 

(3.14) 

I:' 0 
kj(xj - ~ j + l )  9 1 

we can put 

(&(Xi - X j + 1 ) ) '  (3.15) 

Note that, since k; = k; + F,, the condition (3.14) will certainly be satisfied in the 
asymptotic regime of largej. Equation (3.13) then gives 

N N 

NX)) 1 I2 ( ( ~ 3 ~ 1 2 2 )  II (Ieji2 + IBj12). (3.16) 
]=1  j= 1 

Finally, putting together equations (2.4), (3.4) and (3.16), we obtain the result (3.1). 

4. Asymptotic behaviour of (RIT)  

We can now evaluate equation (3.1) for models A and B and discuss the asymptotic 
dependence for a large number N of barriers. 

4.1. M o d e l A  

For model A ,  equation (3.16) gives 

g2  - F \ 

(r) 2: ,; (l + 2[ki + ( j  + 1)F]) 

N 

where 0' : = ( U ? )  (independent ofj). The asymptotic dependence on Ncan be evaluated 
using the following formula: 

where g is an N-independent function. Applied on (4. 1), it gives 

(I?) N+ + +x g(k,, F ,  o ~ ) N ( ~ ~ - ~ ~ ' ~ ~  (4.3) 

(for F # 0). Insertion into (3.1) gives 

(4.4) + &(kN/ko)gN(O2-F)/2F - 
N+ += 
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Since the approximation (3.15) becomes exact as N+ a, we expect (4.4) to be the exact 
asymptotic behaviour. The effect of the electric field is thus a first crossover to power- 
law dependence of (R/T)  from the exponential behaviour found for F = 0. This is in 
agreement with the resultsin [9]. [lo] and [14] forthe random-amplitude Kronig-Penney 
model. 

Equation (4.4) suggests the existence of asecond crossover between two qualitatively 
different behaviours, depending on the value of 02 /F .  Several definitions for the tran- 
sition point have been proposed [9]. In [lo], it was proved that a crossover exists in the 
nature of the spectrum at some criticai fiela F,. For F > Fc the spectrum is absoliitely 
continuous, while for F < F, it is a pure point spectrum (weak localisation; the cor- 
responding eigenfunctions decrease algebraically as opposed to exponentially as found 
for F = 0). This treatment does not yield the value of the critical field F,. (More precisely, 
it was proved only that for FsmaIler than some Fa the spectrum is a pure point spectrum, 
while for F larger than some Fb it is absolutely continuous. The conjecture is that Fa = 
Fb = F,.) There are two differences between the model in [lo] and the present one. 

(i) In [lo], &barriers with fixed positions xi, random amplitudes U, and a constant 
electric field were considered, whereas here both xi and U! are random and the field is 
represented by a staircase. We do not expect this difference to affect the results (note, 
for example, that the particular distribution of the positionsx, does not enter in equation 

(ii) In [lo] the spectral problem for a set of barriers and a field that extended from 
-= to +=was treated, while in our case we have free incoming, transmitted and reflected 
waves. 

(4.4)). 

The two models are close enough to suggest that the spectral properties in [lo] must 
be somehow related to the scattering properties of our model A. In particular, one could 
expect that the crossover in the spectrum mznifests itself in the N-dependence of the 
transmission and reflection coefficients. 

In [ 9 ] ,  two possible definitions of a critical field were proposed in terms of the 
scattering coefficients. 

(i) F,, was defined as the field at which T - N-I ,  which in the present treatment is 

(ii) Fc2 was defined as the field at which (fl’ - N-’, which gives F,, = 02. 

F,, = 02/2.  

However, it was unclear what physical phenomenon they should reflect, and the 
question of which of the two was the ‘correct’ crossover field remained unanswered. The 
idea, for example, that the asymptotic behaviour of tis equal to that of the eigenfunctions 
is not a priori justified, since the two quantities are defined with completely different 
boundary conditions. Below we shall give a direct physical meaning to the two proposed 
values in terms of transmitted energy and current. We conclude that, depending on 
which quantity one measures, the crossover will appear at one or the other critical field. 

We first consider the ratio of incoming to transmitted kinetic energy of a wavepacket 
as defined in § 1. Insertion of (4.4) into (2.17) yields 

(4.5) 

(4.6) 

(E‘” p) - N(&ZF)’12F 
kin kin 

This relation defines a crossover in the energy transmission at a critical field 
F =1 2 

cl 2 0 .  
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For the corresponding ratio of the currents, we obtain (from (2.18) and (4.4)) 

(4.7) 

Fc2 = CJ*. (4.8) 

($I)/J(T)) - N ( “ ~ - F ) / ~ F  

which determines the critical field for the current as 

Thus the two critical fields proposed in [9] have a definite physical interpretation. 
Depending on which quantity one considers, the crossover will appear at one or the 
other critical field. 

4.2.  Model  B 

The corresponding calculations for model B give 

(r) - N-1’2 (4.9) 
and 

( R / T )  = ( ko /k , v ) ( l r /2 / l t / 2 )  - ( k o / k v ) N ’  - constant (4.10) 

and for the energy and current transmission ratios 
($ / (T))  - N-I 

kin Ekin 

( j ( I ) / J ( T ) )  - N-1/2. 

(4.11) 
(4.12) 

This is the same behaviour which one would obtain in absence of barriers. The asymptotic 
behaviour is completely dominated by the electric field. This result shows that the 
crossover is very specific of model A. The relevant difference is that the potential is 
bounded in model B and unbounded in model A. The incoming particles ‘feel’ the 6- 
potentials irrespective of how high their energy is. One knows also [ll] that the spectrum 
for any bounded potential superposed on a constant electric field is always absolutely 
continuous. From these arguments, we expect equations (4.9)-(4.12) to apply also for 
models with bounded barriers of any shape. 

5.  Fluctuations 

1: is wi! known [2, 3, 61 that, ir! the case withoiut the electric field, ~r!’ /~t i2  has an 
anomalous statistical behaviour, in that the fluctuations increase with increasing N 
exponentially faster than the averages. 

In the presence of a finite electric field, we find qualitatively different fluctuation 
properties between models A and B. The relative fluctuation A is defined as 

A* = ( ( R * / T ~ )  - ( R / T ) ~ ) / ( R / T ) ~  = ((r2) - (r)’)/((r) - k o / k , v ) 2 .  (5.1) 
The quantity (r2) can be evaluated [7] by a similar method to the method that we used 
for (r). One obtains the expression 
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and theref ore 

(5.4) A' - N o 2 / 2 F ,  z. 

Thus, in the presence of F ,  the fluctuations still dominate over the averages but only 
algebraically (as opposed to exponentially in the zero-field case). 

For model B, we obtain 

(r2) - N-' (5 .5 )  

which combined with (4.9) and (5.1) gives 

A' - constant. (5.6) 

The fluctuations in model B do not dominate over the averages. 

6 .  Conclusion 

We have obtained analyticexpressionsfor the asymptotics of the average and fluctuations 
of the quantity R/Tfor two models representing disordered one-dimensional systems in 
an external electric field F. Model A consists of (unbounded) b-barriers, and model B 
of bounded square barriers. This difference is crucial and it produces qualitatively 
different results. For F # 0, in model A, (R/T)  has an algebraic asymptotic dependence 
on the number N of barriers, whereas in model B , it tends to a finite constant, in contrast 
with the exponential dependence found in both models in the zero-field case. Figure 1 
summarises the behaviour of the exponents for the two models. 

In the zero-field case, R/Tis directly related to the resistivity by Landauer's formula. 
Its interpretation in the case with a finite electric field was less evident. We give it a direct 
physical interpretation by relating it to the transmission of energy and current. This 
allows us to interpret the two possible critical fields which were proposed in [9] for the 
crossover phenomena that are found in model A. The field F,, was defined as the field 
at which T - 1/N is equal to the field at which the transmission of energy for large N 
switches from tending to zero to tending to infinity; for model A, it is given by F,, = 
02/2. The field Fc2 was defined by ltI2 - 1/Nis equal to  the field at which the transmission 
of current switches from tending to zero to tending to infinity; for model A, it is given 

I I I I I I 
1 3 5 

U 2 / F  

Figure 1. Exponents q E >  qr and q A  defined respectively by the asymptotic behaviour of 
(Et/n/EEi) - "IE, (.T(l)/.T(T)) - N ~ J  and A2 - N": -, exponents of model A as a function 
of a2/F; 6,  exponents of model B. 
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by F,, = 02. For model B, no such crossover is observed; for any finite field F the 
transmission of energy and current always increases with increasing N to infinity. This 
is a consequence of the boundedness of the barriers and may be related to the fact [I11 
that in this case all states are delocalised. This shows that the interesting crossover 
phenomena encountered with 6-potentials is by no means a general phenomenon of 
disordered systems subjected to an external electric field but is linked to the special 
properties of &potentials. 

The relative fluctuations of R / T  are known to diverge exponentially when F = 0. For 
F # 0 they still diverge in model A, but oniy aigebraicaliy. For modei B, they do not 
diverge but tend to a constant. 
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